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Abstract

We call a graph G a k-threshold graph if there are k distinct real numbers θ1, θ2, . . . , θk
and a mapping r : V (G) → R such that for any two vertices u, v ∈ V (G), we have that
uv ∈ E(G) if and only if there are odd numbers θi such that θi ≤ r(u) + r(v). The least
integer k such that G is a k-threshold graph is called a threshold number of G, and denoted
by Θ(G). The well-known family of threshold graphs is a set of graphs G with Θ(G) ≤ 1.
Jamison and Sprague in [Multithreshold graphs, J. Graph Theory, 94(4): 518-530, 2020]
introduced the concept of k-threshold graph, and proved that Θ(G) exists for every graph
G. They further obtained a number of interesting results on Θ(G). In addition, they also
proposed several unsolved problems and conjectures, including the following two.

� Problem: Determine the exact threshold numbers of the complete multipartite graphs.

� Conjecture: For all even n ≥ 2, there is a graph G with Θ(G) = n and Θ(Gc) = n+1.
This is equivalent to that for all odd n ≥ 3, there is a graph G with Θ(G) = n and
Θ(Gc) = n− 1, where Gc is the complement of G.

In this short paper, we give a partial solution of the problem and con�rm the conjecture.
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1 Introduction

We will primarily use the notation and terminologies from West [8]. In this paper, we consider

simple graphs, i.e., �nite, undirected, and no loops or multiple edges. Let G be a graph and

Gc be the complement of G. Denote by V (G) and E(G) the vertex set and the edge set of G,

respectively. For an edge set F ⊆ E(G), let G− F be the graph obtained by removing all edges

in F from G; for an edge set F ⊆ E(Gc), let G + F denote the graph obtained by adding all

edges in F to G. The neighborhood of vertex v ∈ V (G), written NG(v) or N(v), is the set of

vertices adjacent to v.
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A graph G is said to be a threshold graph if there is an assignment r : V (G) → R of real

ranks to the vertices such that uv ∈ E(G) if and only if r(u) + r(v) ≥ 0 for any two vertices

u, v ∈ V (G). The family of threshold graphs, which represents a well-studied class of graphs

from numerous directions, was introduced by Chvátal and Hammer [1] in 1977. Since then, this

family of graphs has been extensively studied and a great deal of intriguing results are acquired.

(see [7, 6, 4, 3, 2].)

Jamison and Sprague [5] recently introduced multithresholds as follows. A graph G is called a

k-threshold graph if there exist k thresholds θ1 < θ2 < · · · < θk and an assignment r : V (G) → R

of real ranks to the vertices such that, for any two vertices u, v ∈ V (G), uv ∈ E(G) if and only

if the number of θi with θi ≤ r(u) + r(v) is odd. The above assignment r and the choice of

k thresholds such that G is k-threshold graph is called a k-threshold representation of G. The

threshold number of a graph G, denoted by Θ(G), is the smallest k such that G has a k-threshold

representation. It is readily seen that any k-threshold representation of G can be converted to a

(k+1)-threshold representation of G as long as a threshold θk+1 > θk is added without changing

the rank of vertices. Therefore, if Θ(G) = k then G is an ℓ-threshold graph for any integer ℓ ≥ k.

In addition, we also note that Θ(H) ≤ Θ(G) if H is an induced subgraph of G.

In the same paper, Jamison and Sprague showed a number of interesting results as follows.

For any graph G of order n, Θ(G) exists and Θ(G) ≤ n(n−1)
2 . For any path P with at least

4 vertices, Θ(P ) = 2. More generally, for any caterpillar T , Θ(T ) ≤ 2. For any two distinct

vertices v, w of a graph G, if vw ∈ E(G) then Θ(G− vw) ≤ Θ(G) + 2, and if vw ∈ E(Gc) then

Θ(G+ vw) ≤ Θ(G)+ 2. Furthermore, they gave a lower bound of the threshold numbers for the

general graphs as well. The following result will be used in our proof.

Theorem 1.1 (Jamison and Sprague [5]). The threshold number of G and its complement Gc

di�er by at most 1. More speci�cally, if Θ(G) is odd then Θ(Gc) ≤ Θ(G), and if Θ(G) is even

then Θ(Gc) ≥ Θ(G).

At the end of the paper, they put forward the following four problems and two conjectures,

cited �which are immediately suggested for further work�.

Problem 1. Let Θn denote the largest threshold number among graphs of order n. How does Θn

behave asymptotically?

Problem 2. Determine better bounds on the threshold numbers of the �ve special classes of

graphs studied in the paper.

Problem 3. Determine the exact threshold numbers of the complete multipartite graphs.

Problem 4. Given an integer k, what is the computational complexity of determining whether

the threshold number of a graph G is at most k?
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Conjecture 1. For all even n ≥ 2, there is a graph G with Θ(G) = n and Θ(Gc) = n+1. This

is equivalent to that for all odd n ≥ 3, there is a graph G with Θ(G) = n and Θ(Gc) = n− 1.

Conjecture 2. The graphs achieving the maximum threshold number Θn have vertex degrees

close to n/2.

At the 2019 Spring Sectional AMS Meeting in Auburn, Jamison o�ered a $50 bounty for an

answer to Problem 3. In this paper, by showing the following Theorem 1.2, we solve the Problem 3

for complete multipartite graphs where each color classes is not too small, and determine the

threshold number of their complements. The combination of the two results fully con�rms

Conjecture 1. Let Kn1,n2,...,nk
denote the complete k-partite graphs, where n1, n2, . . . , nk are

the sizes of its color classes.

Theorem 1.2. Let n1, . . . , nk be k positive integers. If ni ≥ k+1 for each i ∈ {1, 2, . . . , k}, then
Θ(Kn1,n2,...,nk

) = 2k − 2 and Θ(Kc
n1,n2,...,nk

) = 2k − 1.

2 Proof of Theorem 1.2

We break Theorem 1.2 into four sub-theorems: Theorems 2.1, Theorem 2.2, Theorem 2.3 and

Theorem 2.4; and prove them one by one. In the remainder of this paper, we assume that X1,

X2, . . . , Xk are color classes of Kn1,n2,...,nk
with |Xi| = ni for each i ∈ {1, 2, . . . , k}. Jamison

and Sprague [5] proved that Θ(Kn1,n2,...,nk
) ≤ 2k. We �rst improve their upper bound as below.

Theorem 2.1. Θ(Kn1,n2,...,nk
) ≤ 2k − 2.

Proof. Let G := Kn1,n2,...,nk
. De�ne an assignment r : V (G) → R such that the rank r(v) = 3i

if v ∈ Xi for some i ∈ {1, . . . , k}. Let θi = 3i and πi = 2 · 3i for i ∈ {2, 3, . . . , k} be thresholds.

Clearly, every threshold is at least 9. We claim that these 2k− 2 thresholds and the assignment

r give a (2k − 2)-threshold representation of G. Let u, v ∈ V (G) be any two distinct vertices.

Suppose that uv ̸∈ E(G), i.e., u and v are in the same color class, say Xi. We then have

r(u) = 3i and r(v) = 3i, which gives us that r(u) + r(v) = 2 · 3i. If i = 1 then r(u) + r(v) = 6.

Hence, the number of thresholds less than or equal to r(u)+r(v) is zero, and so is even. Suppose

now that i ≥ 2. Obviously, θh = 3h ≤ r(u) + r(v) if and only if h ∈ {2, . . . , i}, and πh = 2 · 3h ≤
r(u) + r(v) if and only if h ∈ {2, . . . , i}. Hence, the number of thresholds less than or equal to

r(u) + r(v) is also even.

Suppose that uv ∈ E(G). In this case, there are two distinct color classes Xi and Xj such

that u ∈ Xi and v ∈ Xj . We assume without loss of generality that i < j. Then r(u) = 3i and

r(v) = 3j , which gives us that r(u)+r(v) < 2 ·3j . Obviously, θh = 3h ≤ r(u)+r(v) if and only if
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h ∈ {2, . . . , j} and πh = 2 · 3h ≤ r(u) + r(v) if and only if h ∈ {2, . . . , j − 1}. Hence, the number

of thresholds less than or equal to r(u) + r(v) is odd.

Therefore, G is (2k − 2)-threshold graph, and so Θ(G) ≤ 2k − 2.

Remark 1. Notice that when n1 = n2 = · · · = nk = 1, the graph K1,1,...,1 is the complete graph

Kn on n vertices. Consequently, Θ(K1,1,...,1) = Θ(Kn) = 1. Jamison and Sprague [5] showed that

Θ(K2,2,...,2) ≤ 3. So, when k ≥ 3, there are n1, n2, . . . , nk such that Θ(Kn1,n2,...,nk
) < 2k − 2.

It would be interesting to know the value of Θ(K3,3,...,3).

Theorem 2.2. If ni ≥ k + 1 for each i ∈ {1, . . . , k}, then Θ(Kn1,n2,...,nk
) ≥ 2k − 2.

Proof. Let G := Kn1,n2,...,nk
and assume Θ(G) = t. Let θ1 < θ2 < · · · < θt and an assignment

r : V (G) → R be a t−threshold representation of G. Next, we show t ≥ 2k − 2.

Claim 1. For any two vertices u, v ∈ V (G), if r(u) = r(v) then N(u)\{v} = N(v)\{u}. It's

equivalent to saying that if u, v are in di�erent color classes then r(u) ̸= r(v).

Proof. Suppose on the contrary that there is a vertex w ∈ N(u)\N(v) and w ̸∈ {u, v}. Since

uw ∈ E(G), there are exactly odd number of thresholds θi such that θi ≤ r(u) + r(w). On the

other hand, since vw /∈ E(G), there are exactly even number of thresholds θi such that θi ≤
r(v)+ r(w). Consequently, r(u)+ r(w) ̸= r(v)+ r(w), giving a contradiction to r(u) = r(v).

Claim 2. Relabeling color classes X1, X2, . . . , Xk if necessary, we may assume that there exist k

pairs of vertices ui, vi ∈ Xi with i ∈ {1, 2, . . . , k} such that max{r(ui), r(vi)} < min{r(uj), r(vj)}
whenever i < j, where j ∈ {1, 2, . . . , k}.

We apply Claim 2 to complete the proof of Theorem 2.2 before giving it a proof. Let k

pairs of vertices ui, vi for i ∈ {1, 2, . . . , k} as stated in Claim 2. We assume without loss of

generality that r(ui) ≥ r(vi) for each i ∈ {1, 2, . . . , k}. Hence, for each 1 ≤ i ≤ k − 1, we have

r(vi) ≤ r(ui) < r(vi+1) ≤ r(ui+1). Furthermore, we have

r(ui) + r(vi) < r(ui) + r(vi+1) < r(ui+1) + r(vi+1). (1)

Since uivi /∈ E(G) and uivi+1 ∈ E(G), there are odd number of thresholds among θ1, θ2, . . . ,

θt between r(ui) + r(vi) and r(ui) + r(vi+1), and so there is at least one threshold θℓi such that

r(ui) + r(vi) < θℓi ≤ r(ui) + r(vi+1). Similarly, we can show that there is at least one threshold

θmi such that r(ui) + r(vi+1) < θmi ≤ r(ui+1) + r(vi+1). By (1), we have θℓi < θmi .

Note that in general we have the following chain of inequalities

r(v1) ≤ r(u1) < r(v2) ≤ r(u2) < · · · < r(vk) ≤ r(uk).
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So, we get that

θℓ1 < θm1 < θℓ2 < θm2 < · · · < θℓk−1
< θmk−1

.

Consequently, there are at least 2k − 2 thresholds, and so Θ(G) ≥ 2k − 2.

Proof of Claim 2: For each i ∈ {1, 2, . . . , k}, let r(Xi) be the non-increasing list of ranks r(x)

of x ∈ Xi. We assume without loss of generality that among all k lists r(X1), r(X2), . . . , r(Xk),

the list r(Xk) has the biggest second-largest rank and denote it by r(vk), i.e., if r(wi) is the

second-largest rank in r(Xi) for some i ∈ {1, 2, . . . , k − 1}, then r(vk) ≥ r(wi). Let r(uk) be the

largest rank in r(Xk). Clearly, r(uk) ≥ r(vk). Note that the equality may hold.

Removing the list r(Xk) from our consideration, we assume without loss of generality that

among all k − 1 lists r(X1), r(X2), . . . , r(Xk−1), the list r(Xk−1) has the biggest third-largest

rank and denote it by r(vk−1). Let r(uk−1) be the second-largest value of r(Xk−1). Clearly,

r(uk−1) ≥ r(vk−1). Since rank r(vk) is the biggest among all second-largest ranks in the lists,

we have r(uk−1) ≤ r(vk). Since uk−1 and vk have di�erent neighborhoods, the strict inequality

holds. As a result, we have r(vk−1) ≤ r(uk−1) < r(vk) ≤ r(uk).

Suppose that we have picked i pairs ranks r(uk), r(vk), . . . , r(uk−i+1), r(vk−i+1). Removing

lists Xk, Xk−1, . . . , Xk−i+1 from our consideration, we assume without loss of generality that

among the remaining k − i lists r(X1), r(X2), . . . , r(Xk−i), the list r(Xk−i) has the biggest

(i + 2)-th largest rank and denote it by r(vk−i). Let r(uk−i) be the (i + 1)-th largest rank in

r(Xk−i). According to our choices, we have r(vk−i) ≤ r(uk−i) < r(vk−i+1) ≤ r(uk−i+1).

Continuing in this fashion, we �nd 2k vertices u1, v1, . . . , uk, vk such that for each i ∈
{1, 2, . . . , k − 1}, r(vi) ≤ r(ui) < r(vi+1) ≤ r(ui+1), which completes the proof of Claim 2.

Theorem 2.3. Θ(Kc
n1,n2,...,nk

) ≤ 2k − 1.

Proof. By Theorem 2.1, we have Θ(Kn1,n2,...,nk
) ≤ 2k − 2. Hence, by Theorem 1.1 we have

Θ(Kc
n1,n2,...,nk

) ≤ Θ(Kn1,n2,...,nk
) + 1 ≤ 2k − 1.

Note that Kc
n1,n2,...,nk

is a union of k disjoint cliques of orders n1, n2, . . . , nk. Although the

proof of Theorem 2.4 on Kc
n1,n2,...,nk

is similar to the proof of Theorem 2.2, we give the proof for

completeness.

Theorem 2.4. If ni ≥ k + 1 for each i ∈ {1, . . . , k}, then Θ(Kc
n1,n2,...,nk

) ≥ 2k − 1.

Proof. Let G := Kc
n1,n2,...,nk

and assume Θ(G) = t. Let θ1 < θ2 < · · · < θt and an assignment

r : V (G) → R be a t-threshold representation of G. Next, we show t ≥ 2k − 1.
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Similar to the proof of Claim 2, we can show that there exist k pairs of vertices ui, vi ∈ Xi

with i ∈ {1, 2, . . . , k} such that max{r(ui), r(vi)} < min{r(uj), r(vj)} whenever i < j. We

assume without loss of generality that r(ui) ≥ r(vi) for each i ∈ {1, 2, . . . , k}. Hence, for each

1 ≤ i ≤ k − 1, we have r(vi) ≤ r(ui) < r(vi+1) ≤ r(ui+1). We further acquire

r(ui) + r(vi) < r(ui) + r(vi+1) < r(ui+1) + r(vi+1). (2)

Since uivi ∈ E(G) and uivi+1 ̸∈ E(G), there are odd number of thresholds among θ1, θ2, . . . ,

θt between r(ui) + r(vi) and r(ui) + r(vi+1), and so there is at least one threshold θℓi such that

r(ui) + r(vi) < θℓi ≤ r(ui) + r(vi+1). Similarly, we can show that there is at least one threshold

θmi such that r(ui) + r(vi+1) < θmi ≤ r(ui+1) + r(vi+1). By (2), we have θℓi < θmi .

In addition, u1v1 ∈ E(G), which in turn implies that there are odd number of thresholds

among θ1, θ2, . . . , θt less than or equal to r(u1) + r(v1). And so there is at least one threshold

θℓ0 such that θℓ0 ≤ r(u1) + r(v1).

Note that in general we have the following chain of inequalities

r(v1) ≤ r(u1) < r(v2) ≤ r(u2) < · · · < r(vk) ≤ r(uk).

Hence, we can obtain that

θℓ0 < θℓ1 < θm1 < θℓ2 < θm2 < · · · < θℓk−1
< θmk−1

.

Consequently, there are at least 2k − 1 thresholds, and so Θ(G) ≥ 2k − 1.
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